Prabhakar-type linear differential equations with variable coefficients
نویسندگان
چکیده
Linear differential equations with variable coefficients and Prabhakar-type operators featuring Mittag-Leffler kernels are solved. In each case, the unique solution is constructed explicitly as a convergent infinite series involving compositions of Prabhakar fractional integrals. We also extend these results to respect functions. As an important illustrative example, we consider case constant coefficients, give solutions in more closed form by using multivariate
منابع مشابه
Linear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملLinear Differential Equations with Coefficients in Fock Type Space
where the coefficients are entire functions. In [8], equations of the form (1) with coefficients in weighted Bergman or Hardy spaces are studied. The direct problem is proved, that is, if the coefficients aj(z), j = 0, ..., k − 1 of (1) belong to the weighted Bergman space, then all solutions are of finite order of growth and belong to weighted Bergman space. The inverse problem is also investi...
متن کاملLinear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential and Integral Equations
سال: 2022
ISSN: ['0893-4983']
DOI: https://doi.org/10.57262/die035-0910-581